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Does Active Inference Provide a Comprehensive
Theory of Placebo Analgesia?
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ABSTRACT

Placebo interventions generate mismatches between expected pain and sensory signals from which pain states are
inferred. Because we lack direct access to bodily states, we can only infer whether nociceptive activity indicates
tissue damage or results from noise in sensory channels. Predictive processing models propose to make optimal
inferences using prior knowledge given noisy sensory data. However, these models do not provide a satisfactory
explanation of how pain relief expectations are translated into physiological manifestations of placebo responses.
Furthermore, they do not account for individual differences in the ability to endogenously regulate nociceptive activity
in predicting placebo analgesia.

The brain not only passively integrates prior pain expectations with nociceptive activity to infer pain states
(perceptual inference) but also initiates various types of actions to ensure that sensory data are consistent with prior
pain expectations (active inference). We argue that depending on whether the brain interprets conflicting sensory data
(prediction errors) as a signal to learn from or noise to be attenuated, the brain initiates opposing types of action to
facilitate learning from sensory data or, conversely, to enhance the biasing influence of prior pain expectations on
pain perception. Furthermore, we discuss the role of stress, anxiety, and unpredictability of pain in influencing the
weighting of prior pain expectations and sensory data and how they relate to the individual ability to regulate noci-
ceptive activity (endogenous pain modulation). Finally, we provide suggestions for future studies to test the impli-
cations of the active inference model of placebo analgesia.

https://doi.org/10.1016/j.bpsc.2023.08.007

... we still did not understand the processes whereby a per-
son’s belief in a sham treatment could send a message to his
or her pituitary gland to release its own endogenous phar-
maceutics. — Anne Harrington (1)

BACKGROUND

Placebo effects are the psychological or physiological effects
that can be directly attributed to receiving a substance or un-
dergoing a procedure but that are not due to the inherent powers
of that substance or procedure (2). Placebo responses are more
general than placebo effects because placebo responses also
include nonspecific effects such as regression to the mean,
spontaneous remission, and normal disease fluctuations,
known and unknown cointerventions, baseline misclassifica-
tion, and other artifacts (3). Therefore, to separate placebo ef-
fects from placebo responses, carefully designed paradigms
should include no-treatment control participants, that is, par-
ticipants who are not exposed to experimental manipulations
(4,5). Placebo effects are also found in active treatments (e.g.,
when receiving the pharmacologically active drug) (6). Specif-
ically, in chronic pain (3,7-9) and depression (10,11), pro-
nounced placebo effects are observed with medium to large
effects. Placebo analgesia can be as strong as the response to a
pharmacological treatment, as seen in chronic pain (12).

The most common placebo manipulations are classical
conditioning and verbal suggestions (6). In classical condition-
ing, placebo effects are conceptualized as conditioned re-
sponses (13-15). The active treatment (e.g., analgesic drug)
serves as an unconditioned stimulus, and administration
methods (e.g., the color, shape, and taste of the drug) serve as
conditioned stimuli. Individuals are assumed to implicitly learn
associations between the unconditioned stimulus and the
conditioned stimuli. Similarly, symbols and rituals of the medical
context (e.g., familiar sight of the health care provider, disinfec-
tion procedures) also become associated with the beneficial or
detrimental effects of the active treatment (16). When the active
treatment is replaced by an inactive treatment (e.g., a placebo
pill), the administration method may trigger placebo effects (4).
Other conditioning paradigms implicitly manipulate nociceptive
activity by surreptitiously decreasing noxious stimulation in-
tensities in the presence of placebo cues (14,17-19). Placebo
effects can also be induced by verbal suggestions. In a typical
verbal suggestion paradigm, the placebo group receives treat-
ment efficacy information (“This is a fast and potent analgesic.”),
whereas the control group does not receive treatment-related
information. Subsequently, both groups receive an inactive
treatment to control for any influences of the inactive treatment,
thus allowing for the measurement of the specific effects of the
expectation manipulation on therapeutic outcomes (20).
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Various contextual and individual factors influence sus-
ceptibility to placebo and nocebo effects (6). Furthermore,
imaging studies (21-23) and pharmacological studies (4,24,25)
have identified neural correlates and opioid and non-opioid
pathways that are involved in placebo analgesia. Placebo
analgesia has been formulated as a Bayesian problem of
integrating prior expectations of pain states with sensory data
that deviate from those pain states (26). For example, placebo
paradigms generate expectations of pain relief, which are not
accompanied by corresponding reductions in nociceptive ac-
tivity. Prior expectations of pain states are integrated with
sensory data, and both are weighted by their respective pre-
cision to form a percept (26-28).

However, current predictive processing models of placebo
analgesia do not provide a comprehensive framework of the
actions that the brain can use to integrate and react to expec-
tations of pain states that are not matched by corresponding
sensory data indicating those pain states. Therefore, an over-
arching theoretical framework is lacking, which explains how
attentional shifts or endogenous regulation of nociceptive ac-
tivity are used in the processes of integrating pain relief expec-
tations with nociceptive signals to mediate placebo analgesia
(1,16,29). Answering these questions could help explain the large
interindividual variability in placebo responsiveness, which re-
flects limitations in our understanding of placebo mechanisms
(22,30). Current models only emphasize the passive integration
of pain relief expectations and nociceptive signals (i.e., percep-
tual inference) (26,31) or the role of somatic attention in placebo
analgesia (27). Furthermore, these models are often based on
the premise that the ability to perceive nociceptive signals
accurately reduces placebo analgesia (28,32,33).

We provide a comprehensive overview of the brain’s ability
to infer pain states in common placebo paradigms when pre-
sented with pain expectations that conflict with sensory data.
More specifically, we define the conditions under which active
inference should promote or mitigate placebo analgesia. We
argue that the active inference approach makes more differ-
entiated assertions regarding placebo responsiveness in
different placebo paradigms, such as classical conditioning or
verbal suggestion paradigms.

PREDICTIVE PROCESSING MODELS OF PLACEBO
ANALGESIA

Predictive processing models assert that the brain does not
simply receive and interpret bottom-up signals from the pe-
riphery but rather generates top-down predictions about the
expected causes of sensory signals (34). This inferential pro-
cess is necessary because the true causes of sensory signals
remain hidden and are not directly accessible to the brain.
Therefore, the brain uses expectations to improve and accel-
erate the deduction of the causes of often noisy and ambig-
uous sensory signals (35). According to the predictive coding
perspective, perceptual contents are primarily driven by top-
down predictive signals that emerge from hierarchically orga-
nized generative models of the causes of sensory signals
(36,37). Mismatches between prior expectations and sensory
data are encoded as prediction errors (PEs) that provide
corrective feedback for subsequent predictions of expected
sensory signals (Figure 1) (36).
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Placebo manipulations generate mismatches (i.e., PEs) be-
tween expected pain states and sensory data that are indica-
tive of those pain states (26). For example, verbal suggestions
can generate expectations of pain relief which are not sup-
ported by reductions in nociceptive activity because the
inactive treatment does not influence nociceptive activity.

Because prior expectations and the sensory data given
those prior expectations (likelihood) are associated with
varying degrees of uncertainty, refinement of generative
models is not simply linearly driven by PEs. These un-
certainties in prior expectations and sensory data are
conceptualized in their precision (corresponding to the in-
verse variance of the prior and likelihood, respectively)
(Figure 1A). Psychologically, precisions correspond to the
confidence that an individual assigns to prior expectations
versus the relevance that the individual attributes to sensory
data (27). Therefore, placebo analgesia depends on both: PE
(difference between expected pain relief and the pain relief
indicated by the sensory data) and the assumed precisions
(confidences) that are assigned to the expected pain relief
and the sensory data (26,27) (Figure 1A).

High precision of the prior (small width of the prior distri-
bution) reduces belief updates, whereas high precision of the
sensory data (small width of the likelihood distribution) in-
creases belief updates (38). However, a hyperprecise prior can
cause cognitive immunization, resulting in a dissociation of
prior expectations from corrective sensory feedback so that
expectations are maintained despite conflicting sensory data
(39-41). According to an influential predictive processing
model of medically unexplained symptoms (MUSs) (42), which
are defined as symptom perceptions that are not consistent
with (patho)physiology (42), MUSs arise from hyperprecise (but
biased) prior expectations. Because of the learning history of
individuals with MUSs, there is an increased propensity to
perceive harmless sensory signals as symptoms because prior
expectations of symptoms overly bias the perception of sen-
sory data (39,42,43). Therefore, symptoms are perceived even
when sensory data does not indicate pathophysiology; thus,
MUSs can be aptly described as “somatovisceral illusions”
(42). The same rationale could be applied to placebo effects, in
which placebo manipulations may promote precise but biased
expectations of pain relief, which are not supported by sensory
data (indicating ongoing pain) (26).

LEARNING FROM SENSORY DATA OR STICKING
WITH PRIOR EXPECTATIONS?

According to predictive processing models, prior expectations
should bias pain perception even when sensory data contra-
dict those expectations (Figure 1) (44,45). However, prior ex-
pectations can deviate significantly from sensory data,
indicating that expectations are misleading and should be
corrected. Hird et al. (46) found measurable boundaries to the
biasing influence of prior expectations on pain perception.
Large mismatches between cued pain intensities and noxious
stimulation intensities nullified the influence of cued pain in-
tensities on pain perception in a deception-free cue-condi-
tioning paradigm. It is noteworthy that the boundaries at which
cued pain intensities no longer biased pain perception varied
greatly from person to person.
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Figure 1. Predictive processing model of placebo
analgesia. (A) Predictive processing models posit
that placebo analgesia (posterior pain perception:
yellow distribution) results from Bayes-optimal inte-
gration of prior expectations of pain relief (prior: red
distribution) with sensory data (likelihood: blue dis-
tribution). Suggestions of pain relief generate con-
flicts between expected pain relief and sensory data,
indicating ongoing pain. According to predictive
processing, placebo analgesia depends on both
prediction errors (PEs) (difference in central tendency
between expected pain relief and sensory data) and
the assumed precisions (confidences) that are
assigned to the anticipated pain relief and the sen-
sory data (precision ratio, corresponding to the
respective widths of the prior and likelihood distri-
butions). Therefore, depending on the respective
precisions of prior expectations and sensory data,
equal distances in central tendency between prior
expectations and sensory data can result in different
precision-weighted PEs. Thus, the precision
weighting of sensory PEs is indicated by the line-
width, with larger linewidths indicating larger preci-
sion weighting of sensory data vs. prior expectations
of pain relief. (B) Large precision-weighted PEs are
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data) and when the assumed precision of the sen-
sory data is high (large linewidth of PEs). In this case,
prior expectations can easily be updated by the
sensory data. (C, D) Moderate precision-weighted
PEs are expected when (C) the mismatch between
expected pain and sensory data is large but the
assumed reliability (precision) of the sensory data is
low (small linewidth of PEs) or (D) the mismatch
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What factors determine these boundaries? According to the
opposing process model of perception (47), perceptual sys-
tems are always confronted with a tradeoff between what we
expect is more likely but also less informative. Therefore,
perceptual systems could bias perceptions that are based on
prior expectations (more likely) or, conversely, reduce the in-
fluence of expectations on perception by accentuating sensory
data that contradict prior expectations (more informative).

Biasing perception based on expectations carries the risk of
missing meaningful changes in the environment or within the
body, such as potential tissue damage. Conversely, minimizing
the influence of expectations on perception also comes at a
cost because sensory signals are inherently noisy and
ambiguous (37,38), and detailed sensory processing is time
consuming (48,49). Therefore, biasing perception based on
prior expectations is adaptive when sensory data are assumed
to be noisy (44,50) or when rapid perceptual categorization is
preferred over detailed sensory analysis (e.g., when rapid ac-
tion is required in anticipation of a threat) (43,51). For example,

Small mismatch between expected pain and nociceptive activity
and low precision of sensory data

sensory data is small and the precision of the sen-
sory data is low. In this case, prior pain expectations
can dominate the pain perception.

it is adaptive to bias visual perception based on prior expec-
tations of familiar objects when navigating through one’s own
kitchen in the dark. Conversely, accentuating unexpected
sensory information would improve perception when sensory
data are deemed to be precise (informative). For example,
when picking up an object of unknown density and size, the
influence of proprioceptive expectations should be reduced,
and muscular effort should be adjusted primarily based on
unexpected proprioceptive sensory information.

Two important conclusions can be drawn when these
concepts are applied to the boundary effects of the influence
of cued intensities on perceived pain intensities (46). First,
boundary effects are found when cued intensities (prior ex-
pectations) and noxious stimulation intensities (sensory data)
show large mismatches, which should facilitate learning from
sensory data that contradict prior expectations. Conversely,
small mismatches between cued intensities and stimulation
intensities should enhance the influence of prior expectations
on biasing pain perception. Second, large interindividual
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differences in boundary effects may be explained by interin-
dividual differences in weighting PEs. Therefore, the confi-
dences (precisions) that individuals assign to cued intensities
versus their ability to veridically infer pain intensities from
sensory data vary from person to person. Thus, the brain
should declare sensory data as meaningful signals to learn
from when mismatches (i.e., PEs) between expected pain and
nociceptive activity are large and the precision of the sensory
data is assumed to be high (resulting in large precision-
weighted PEs) (Figure 1B). Conversely, the influence of prior
expectations on biasing pain perception should be increased
when PEs between expected pain and nociceptive activity are
small and the precision of the sensory data is assumed to be
low (resulting in small precision-weighted PEs) (Figure 1E). If
PEs are large but the precision of the sensory data is low
(Figure 1C), or conversely, if PEs are small but the precision of
the sensory data is high (Figure 1D), then pain perception
should be moderately biased by expectations.

ACTIVE INFERENCE THEORY OF PLACEBO
ANALGESIA

How can the brain increase the influence of prior expectations
on biasing pain perception when precision-weighted PEs are

Sensory data is interpreted as signal to learn from when the difference between prior pain expectations and
sensory data is large and when the sensory data is assumed to be highly reliable (high precision-weighted PE)

Weak Placebo Analgesia
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—_—

Posterior.
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sensory data
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small or, conversely, facilitate learning from sensory data when
precision-weighted PEs are large?

Bayes-optimal integration of prior expectations and sensory
data is aimed at minimizing future PEs (34). However, mini-
mization of future PEs cannot only be achieved by passively
updating generative models by sensory data contradicting
those expectations (perceptual inference) (Figure 1). The brain
can also initiate various actions which ensure that sensory data
are consistent with prior expectations (active inference)
(Figure 2). Active inference provides a rich set of options to
minimize future PEs using the combined effects of action and
perception (34). What actions can the brain perform to adjust
sensory data to expectations of pain relief (or increase)—that
is, to make sensory data consistent with those expectations?

First, the brain can initiate regulatory actions that adjust
nociceptive activity to prior expectations of pain states. For
example, in anticipation of pain relief, the brain can facilitate
descending pain inhibition by releasing endogenous opioids
(4,52). Second, the brain can increase or decrease attention to
sensory data that is either consistent or that conflict with prior
pain expectations (27). Selectively allocating attention to sen-
sory data that support prior expectations of pain relief (or in-
crease) is defined as selective sampling (53,54). For example,
the brain might preferentially allocate attention to sensory data

Figure 2. Active inference strategies to (A) facili-
tate learning from large precision-weighted predic-
tion errors (PEs) or (B) enhance the influence of prior
expectations of pain states on biasing pain percep-
tion. The widths of the red and blue distributions
indicate the assumed precisions of pain expectations
(prior) and sensory data (likelihood). The distance
between the prior (red distribution) and the likelihood
(blue distribution) indicates PE. The linewidth of PEs
indicates the relative weighting of prior expectations
vs. sensory data, with larger linewidths of precision-
weighted PEs indicating stronger weighting of sen-
sory data vs. prior pain expectations. (A) Large
precision-weighted PEs are assumed when the dif-
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prior expectations is facilitated by increasing somatic
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antinociceptive) actions to improve learning from
sensory data. (B) Conversely, small precision-
weighted PEs are assumed to enhance the influ-
ence of pain expectations on biasing pain percep-
tion. This could be achieved by sensory attenuation
of sensory data conflicting with prior expectations or
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that indicate pain relief when anticipating pain relief (27).
Accordingly, individuals who were instructed to closely
monitor the bodily effects of the active drug (which was a
placebo) reported more placebo symptoms than those who
received no instructions (55). Furthermore, there is often a high
degree of correspondence between reported placebo or
nocebo effects and therapeutic or side effects described in the
therapeutic information (11,46). This finding can be explained
by passive perceptual inference, in which high-precision prior
expectations of placebo or nocebo effects make the reporting
of those effects more likely. However, according to the active
inference model, information about therapeutic effects and
side effects should also selectively decrease attention to
sensory data that conflict with anticipated bodily effects
(sensory attenuation) and increase attention to sensory data
that confirm anticipated bodily effects (selective sampling) (53).

ACTIVE INFERENCE IN CLASSICAL CONDITIONING
AND VERBAL SUGGESTION PARADIGMS

Placebo paradigms generate conflicts between expected pain
states (prior) and sensory data for those pain states (likelihood)
(26,56). However, placebo analgesia is differentially realized in
classical conditioning and verbal suggestion paradigms (Figure 3).
While verbal suggestion paradigms manipulate prior expectations

Classical Conditioning: Pain relief is driven implicitly by sensory data indicating pain relief

A

Large precision-weighted PE predicts strong placebo analgesia
Sensory data indicate pain relief and are interpreted as signal to learn from
due to their high precision. Thus prior expectations of ongoing pain are
updated.

Active inference facilitates learning from sensory data
indicating pain relief by ...

Probability Density

* Increasing attention to sensory signals indicating pain relief
« Initiating antinociceptive responses based on expectations of pain relief in the
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C—
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Sensory Data:
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of pain states, classical conditioning paradigms manipulate sen-
sory data for those pain states by surreptitiously increasing or
decreasing nociceptive activity during conditioning (17).

In classical conditioning paradigms, high-precision PEs
should facilitate placebo analgesia because implicit expecta-
tions of pain relief can only be generated when sensory data
reliably indicate analgesia in the presence of placebo cues.
Therefore, active inference strategies that facilitate learning
from PEs should increase placebo analgesia in conditioning
paradigms (Figure 3A). In contrast, verbal pain relief sugges-
tions can only induce placebo analgesia when pain relief ex-
pectations are not challenged by high-precision PEs. Thus,
active inference strategies that enhance the influence of prior
expectations on biasing pain perception should increase pla-
cebo analgesia in verbal suggestion paradigms (Figure 3C).
Current predictive processing models fail to distinguish be-
tween the different involvement of predictive processing in
verbal suggestion and classical conditioning paradigms.

SMALL PRECISION-WEIGHTED PEs INCREASE
PLACEBO ANALGESIA IN VERBAL SUGGESTION
PARADIGMS

In verbal suggestion paradigms, small precision-weighted PEs
are expected to increase placebo analgesia because sensory

Figure 3. Susceptibility to placebo analgesia in
classical conditioning vs. verbal suggestion para-
digms. Active inference theory implies opposite as-
sumptions about placebo responsiveness in
classical conditioning (top) and verbal suggestion
paradigms (bottom). (A) Large precision-weighted
prediction errors (PEs) are assumed to increase
placebo responsiveness in classical conditioning
because placebo cues can only predict reliable pain
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relief if the reduction in sensory activity caused by
the unconditioned stimulus is recognized as a reli-
able signal of pain relief. Active inference can in-
crease learning from sensory data by increasing
attention to sensory signals (selective sampling) that
indicate pain relief or by initiating antinociceptive
regulatory responses. (B) Small precision-weighted
PEs are assumed to reduce placebo analgesia in
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sampling) or antinociceptive physiological re-
sponses. (D) Large precision-weighted PEs are

Pain Intensity

Posteror
Pain Perception|

D

Large precision-weighted PE predicts weak placebo analgesia

Sensory data indicate ongoing pain and are interpreted as signal to learn from
due to their high precision. Thus prior expectations of pain relief are updated.

|Active inference facilitates learning from sensory data of

Probability Density

Large precision-weighted PE
e

|Pain Percepion)

assumed to decrease placebo analgesia in verbal
suggestion paradigms because sensory signals that
conflict with prior expectations of pain relief are
assumed to revise prior expectations of pain relief.

Postoror

‘ongoing pain by ... [t i precison|
- Decreasing attention to sensory data indicating ongoing pain P ooy s
~ Initiating pronociceptive responses fulfilling expectations of ongoing pain

Pain Intensity

14 Biological Psychiatry: Cognitive Neuroscience and Neuroimaging January 2024; 9:10-20 www.sobp.org/BPCNNI

Downloaded for Anonymous User (n/a) at US Department of Veterans Affairs from ClinicalKey.com by Elsevier on January
15, 2025. For personal use only. No other uses without permission. Copyright ©2025. Elsevier Inc. All rights reserved.


http://www.sobp.org/BPCNNI

Active Inference Theory in Placebo Analgesia

data that contradict prior expectations are declared as noise to
be attenuated (Figure 3C). Therefore, pain relief suggestions can
bias pain perception more easily. In contrast, large precision-
weighted PEs should reduce placebo analgesia in verbal sug-
gestion paradigms because anticipated pain relief is easily
revised by sensory data that indicate ongoing pain (Figure 3D).
Consistently, individuals with chronic pain who show higher
variability in daily pain ratings preferentially respond to placebo
(57,58). Moreover, individuals who rate noxious stimulation in-
tensities more reliably are less responsive to pain relief sugges-
tions (32,33). It is noteworthy that individuals with diabetic
neuropathic pain who improved significantly during pain reporting
accuracy training also showed less placebo analgesia in a
pregabalin-placebo trial, indicating that placebo analgesia is
hampered when the ability to accurately perceive nociceptive
activity is improved (33). These findings suggest that individuals
with higher accuracy in perceiving nociceptive signals show a
stronger tendency to revise suggestions of pain relief by assigning
more precision to sensory data indicating ongoing pain. The brain
can enhance the biasing influence of prior expectations of pain
relief by initiating antinociceptive responses that adjust the noci-
ceptive activity to the anticipated pain relief (Figure 2B).
Descending pain inhibition can not only be facilitated by stimu-
lating the release of endogenous opioids (4,59) but also by non-
opioid mechanisms (60,61). Furthermore, the brain can reduce
the precision of PEs using sensory attenuation, which increases
the width of the likelihood distribution (27,62) (Figure 2B). Conse-
quently, Bayesian updating of expected pain relief is hampered
because PEs have less impact on refuting pain relief expectations.
To date, only a few studies have investigated the mediating
influence of somatic attention on placebo analgesia or pain
perception (27,63,64). In one study, it was suggested to par-
ticipants that they receive a drug (which was a placebo in all
groups), a drug or placebo, or a placebo (55). Half of the par-
ticipants in each group were instructed to closely monitor
bodily sensations after receiving the drug or placebo, while the
other half did not receive attention instructions. The somatic
attention instruction predicted the reporting of more placebo
symptoms in the drug group, while the somatic attention in-
struction had no effect on symptom reporting in the drug or
placebo group or the placebo group. These findings indicate
that selective attention to the body can increase placebo ef-
fects when the precision (confidence) of receiving a drug is
sufficiently high. Conversely, participants who were experi-
encing less pain during a working memory task showed larger
nocebo hyperalgesia, indicating that distraction from pain may
facilitate nocebo responses (63). These findings suggest that
placebo analgesia and nocebo hyperalgesia can be modified
by increasing or decreasing (e.g., distraction) attention to
sensory data that are consistent with the placebo or nocebo
suggestion. However, modulations of somatic attention may
affect placebo responsiveness only when the precision that is
assigned to prior expectations is sufficiently high (27,55).

LARGE PRECISION-WEIGHTED PEs INCREASE
PLACEBO ANALGESIA IN CLASSICAL
CONDITIONING PARADIGMS

In classical conditioning paradigms, large precision-weighted
PEs are assumed to increase placebo analgesia because
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placebo cues can only indicate pain relief if the reduction in
nociceptive activity caused by the active treatment is recog-
nized as a reliable signal of pain relief (Figure 3A). Therefore, if the
analgesic does not reliably reduce nociceptive activity or if the
individual has only limited ability to perceive the reduction in
nociceptive activity accurately, the placebo cues cannot indicate
reliable analgesia because the precision-weighted PEs are too
small to indicate pain relief (Figure 3B). Accordingly, experi-
mentally reducing the accuracy of sensory data in a placebo
conditioning paradigm predicted less placebo analgesia (31).
This study compared 2 groups experiencing the same mean
reduction in noxious stimulation intensity during conditioning.
While stimulation intensity was reduced by a constant amount in
one group (large precision-weighted PEs), stimulation intensity
varied greatly in the other group (small precision-weighted PEs).
Consistent with the assumption that large precision-weighted
PEs during conditioning should increase placebo analgesia,
reliable reductions in stimulation intensity predicted larger pla-
cebo analgesia than variable reductions in stimulation intensity
(31). These findings suggest that higher accuracy (or confidence)
in perceiving nociceptive activity predicts larger placebo anal-
gesia in conditioning paradigms because more precision is
assigned to sensory data that indicate pain relief (28,33). If the
placebo cues were indicative of reliable analgesia during con-
ditioning, prior expectations of pain relief (in the presence of
placebo cues) should have yielded high precision after condi-
tioning. Thus, the placebo cues can elicit potent placebo anal-
gesia when the active treatment is replaced by the inactive
treatment. Potent placebo analgesia in the presence of placebo
cues could be facilitated by initiating antinociceptive responses
(e.g., release of endogenous opioids) or sensory attenuation of
sensory signals indicating ongoing pain (Figure 2B).

Persistent placebo analgesia has commonly been found in
classical conditioning paradigms (65). However, these persis-
tent placebo effects cannot be sufficiently explained by pas-
sive integration of prior expectations of pain states and
sensory data for those pain states (i.e., perceptual inference).
For example, consider a patient with ongoing pain who is
participating in a conditioning paradigm with an opioid drug.
The brain must infer pain from prior expectations of ongoing
pain, which are not matched by corresponding nociceptive
activity during the conditioning phase (because the opioid
reduced nociceptive activity) (Figure 3A). According to
perceptual inference, the brain could update beliefs about pain
states by learning from PEs, indicating pain relief. However,
such pain relief expectations are volatile and should be quickly
corrected by sensory data in the testing phase when noci-
ceptive activity returns to baseline after the opioid has been
replaced by the inactive treatment. In addition, referring to
active inference, the conditioning with the opioid-induced
physiological (antinociceptive responses) and attentional
changes (e.g., selective sampling of sensory data indicating
pain relief, attenuation of sensory data indicating pain increase)
could explain persistent placebo analgesia.

EVOLUTIONARY FUNCTION OF ACTIVE INFERENCE
IN PLACEBO ANALGESIA AND PAIN PERCEPTION

Active inference is a more promising approach to explaining
the physiological manifestations of placebo analgesia than
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perceptual inference (66) because it relates placebo analgesia
to homeostatic principles (53,67,68). Pronociceptive and anti-
nociceptive responses are understood as regulatory actions
that minimize discrepancies between expected and actual
nociceptive inputs (53). From this perspective, active inference
in nocebo hyperalgesia is analogous to the allostatic (prepa-
ratory) and homeostatic (reactive) responses that occur when
anticipating or dealing with physical or social stressors (53,69).
Pronociceptive responses stimulate defensive behaviors that
improve coping with physical threats (70-72), e.g., by
increasing arousal (73-75). Conversely, antinociceptive re-
sponses reduce the allostatic load that is associated with
prolonged pain-related stress responses, thereby helping to
conserve resources for other tasks such as foraging or
reproduction (38,69,73,76).

Because threats to bodily integrity remain uncertain, regu-
lation of nociceptive activity should depend on the tradeoff
between the cost of defensive responses and the cost of not
expressing defensive responses when physical threats actually
exist (71,72,77). Defensive responses to protect the body are
assumed to be inexpensive, while the cost of missing defen-
sive (e.g., pronociceptive) responses in the event of physical
threats is high (71). In chronic pain, the brain might have
learned a “better safe than sorry” strategy (43), e.g., being
overly protective so as to not miss any signals of bodily threat
and being overly prone to showing pronociceptive responses.
Therefore, high precisions (confidences) are assigned to prior
expectations of pain aggravation and sensory data indicating
pain aggravation. In this sense, deficient endogenous pain
modulation in chronic pain (78,79) may be understood as an
active inference strategy that facilitates defensive behavior in
various biopsychosocial contexts rather than as an anti-
nociceptive dysfunction (73). This may explain why a recent
meta-analysis failed to provide evidence for the involvement of
endogenous opiates in facilitating placebo analgesia in chronic
pain (30). Emphasizing the tradeoff between the cost of
missing potential threats to bodily integrity versus the allostatic
load associated with maintaining defensive pain behaviors
underscores the fact that the precision that is assigned to
sensory data does not simply depend on accuracy in
perceiving nociceptive signals (28,32,33) but rather on the
affective-motivational nature of the pain.

THE ROLE OF ACTIVE INFERENCE IN PLACEBO
ANALGESIA: MEASURING CHANGES IN
ENDOGENOUS PAIN MODULATION

Endogenous pain modulation can be measured using various
paradigms, such as temporal summation of pain or condi-
tioned pain modulation (CPM) (80,81). In CPM, noxious stim-
ulation at one body site serves as a conditioning stimulus that
reduces pain evoked by a test stimulus applied at a distant site
(80). Larger CPM responses indicate better descending pain
inhibition (82). It has been proposed that placebo analgesia
and CPM rely on similar neurocognitive mechanisms of
endogenous pain modulation (82-84). Accordingly, psycho-
logical factors that predict placebo effects also predict CPM
responses (85,86). While studies using trait questionnaires
often fail to find associations between anxiety or stress-related
variables and CPM responses (87), experimentally inducing

Active Inference Theory in Placebo Analgesia

stress often reduces CPM responses (88-90). Moreover,
verbally suggesting that the conditioning stimulus in the CPM
increases (nocebo) or decreases pain (placebo) predicted
increased (nocebo) or decreased (placebo) CPM responses,
respectively (85). However, changes in CPM responses were
only found in individuals who showed increased or decreased
stress levels during the nocebo or placebo intervention. These
findings are consistent with the evolutionary perspective that
antinociceptive responses are too expensive when a perceived
threat to bodily integrity is high.

Conversely, when the context is perceived as safe and the
brain infers that it has sufficient resources to cope with physical
threats, the brain should reduce pain-related stress responses
by dampening nociceptive activity, thereby saving metabolic and
cognitive resources for other tasks (71). This perspective may
explain why chronic pain populations (in which pain is often
perceived as unpredictable and uncontrollable) show deficient
endogenous pain modulation (78,79), while athletes (who
voluntarily engage in sports competitions that are known to elicit
pain) exhibit more efficient endogenous pain modulation than
nonathletes (91). Consistent with the assumption that maintain-
ing compensatory dampening of nociceptive activity is too
expensive when coping with unpredictable threats, inducing
stress blocks descending pain inhibition in healthy participants
(88,89). Interestingly, athletes lose their advantage in endoge-
nously inhibiting pain over nonathletes when under acute stress
(90). Therefore, perceived threat should be taken into account
when estimating how much precision is assigned to prior ex-
pectations of pain versus sensory data (43,92).

The dorsolateral prefrontal cortex and the periaqueductal
gray (PAG) are pivotal nodes of the descending pain inhibition
system (93). A recent functional magnetic resonance imaging
study with healthy participants found evidence for differential
involvement of the descending pain inhibition system
depending on whether high-intensity noxious stimuli were
received unexpectedly or could be anticipated (92). Using drift-
diffusion modeling in combination with a probabilistic cueing
paradigm, the authors could distinguish between the influence of
expectations on biasing pain decision making (prior to sensory
processing) versus the influence of expectations on changing
sensory processing (e.g., via descending pain inhibition). The
study found that dorsolateral prefrontal cortex activity preceded
PAG activation during stimulation only when the expected high-
pain stimulus was actually received. Conversely, the PAG was
not activated during stimulation when the high-intensity stimulus
was received unexpectedly (cueing low pain, receiving high
pain). Moreover, unexpectedly receiving high pain was associ-
ated with increased drift rates in the drift-diffusion model, indi-
cating facilitated learning from the sensory data. Notably, these
drift rates were correlated with both amygdala activity and
connectivity between the amygdala and PAG.

These findings suggest that healthy participants dampen
nociceptive activity (using descending pain inhibition) only
when noxious stimulation occurs within predictable contexts.
Conversely, unexpectedly receiving high-intensity stimulation
may block descending pain inhibition and facilitate threat-
related processing (e.g., increased amygdala-PAG connectiv-
ity). Whether these findings generalize to chronic pain pop-
ulations, in which pain is often uncontrollable and
unpredictable, has yet to be evaluated.
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SUGGESTIONS FOR FUTURE STUDIES

Several implications can be derived from the active inference
model of placebo analgesia that could be tested in future studies.

Although it has been proposed that higher accuracy in
perceiving nociceptive activity decreases placebo analgesia
(28), we argue that perceiving nociceptive activity accurately
may increase placebo analgesia in conditioning paradigms.
Placebo cues can only indicate analgesia when the surrepti-
tious reduction in nociceptive activity was reliably perceived
during conditioning. Most studies have used combinations of
suggestions and conditioning, and the combination often leads
to stronger placebo analgesia (94,95). Therefore, we propose
further investigating how accuracy in perceiving nociceptive
activity influences placebo analgesia when combining condi-
tioning and suggestions. In most placebo studies, suggestions
precede conditioning. However, the order of conditioning and
verbal suggestions influences placebo analgesia (95). It could
be speculated that assigning more precision to sensory data
than to prior expectations leads to stronger placebo analgesia
when conditioning precedes verbal suggestions because
assigning more precision to sensory data, which indicates pain
relief during conditioning, is assumed to facilitate learning from
sensory data using active inference strategies. Therefore, in-
dividuals who show larger precision-weighted PEs should be
more easily persuaded by pain relief suggestions when the
brain has previously adjusted sensory data to pain relief ex-
pectations during the conditioning phase (e.g., via anti-
nociceptive responses) (Figure 3).

Studies have shown that prior expectations bias pain
perception only when the noxious stimulation intensity does
not deviate much from the expected pain (46,92). However,
these studies have neither measured the influence of the in-
dividual’s ability to perceive nociceptive activity accurately nor
investigated the influence of the perceived threat that is
induced by the mismatches between cued pain intensities and
noxious stimulation intensities. Therefore, we propose inves-
tigating whether individual boundaries regarding the influence
of prior expectations on biasing pain perception (96) can be
predicted by 1) the accuracy in perceiving nociceptive activity,
2) the confidence in perceiving nociceptive activity accurately,
and 3) the perceived threat induced by incongruences between
cued intensities and noxious stimulation intensities.

Novel computation paradigms allow quantification of the
relative contributions of expectations versus sensory data in
predicting pain perception (92,97,98). These paradigms allow for
better explanations of endogenous control phenomena by ac-
counting for the dynamic integration of prior expectations and
sensory data in pain perception, which cannot be captured in
conventional paradigms such as CPM or temporal summa-
tion of pain (97). For example, in the nociceptive predictive
processing task (97), the association strength between a cue
and a slightly suprathreshold nociceptive stimulus is gradu-
ally reduced after conditioning (by increasing the number of
trials during which cues are followed by subthreshold stim-
uli). A computational model is used to estimate the gradual
curves of learning (conditioning phase) and unlearning (test
phase) the cue-stimulus association, making it possible to
quantify the relative contributions of prior expectations and
sensory data on pain perception.
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Quantifying the contributions of prior expectations versus
sensory data in different affective contexts may provide clini-
cally relevant predictors of placebo analgesia and nocebo
hyperalgesia. Based on our model, larger weighting of prior
expectations should predict placebo analgesia in verbal sug-
gestion paradigms, while prioritizing sensory data should
predict placebo analgesia in conditioning paradigms.

Moreover, we propose studying differences in the weighting of
prior expectations versus sensory data in populations that show
either deficient (e.g., chronic pain) or superior (e.g., professional
athletes) endogenous pain modulation. To further investigate the
role of perceived threat in assigning precisions to prior expec-
tations versus sensory data, these novel computational para-
digms can be used to measure the impact of acute stress on the
relative contributions of prior expectations and sensory data to
pain perception. Because chronic pain is characterized by un-
controllable pain and systematic perceptual aberrations (99-101),
we speculate that chronic pain populations show larger weight-
ing of prior expectations of pain aggravation, which leads to
highly precise but biased perceptions of pain (101).

CONCLUSIONS

Placebo manipulations generate conflicts between expected
pain states and sensory data for those pain states. Models of
placebo analgesia often refer only to factors that influence
expectations of pain without further considering the
expectation-supporting or expectation-violating function of
processing and regulating nociceptive activity.

Referring to the question raised in the title, the active infer-
ence model of placebo analgesia advances our understanding of
the way that Bayesian inference could explain changes in the
psychophysiological manifestations of placebo analgesia due to
placebo or sham manipulations one step further. It makes spe-
cific predictions about how the brain can use precision-weighted
PEs to endogenously modulate nociceptive activity or shift
attention to nociceptive activity to either increase the biasing
influence of prior expectations (small precision-weighted PEs) or
increase learing from sensory data (large precision-weighted
PEs). However, future studies must answer the question of
whether the active inference model of placebo analgesia pro-
vides a comprehensive model of placebo analgesia.

ACKNOWLEDGMENTS AND DISCLOSURES

This research was funded by the Research Initiative of Rhineland-Palatinate,
Germany (Forschungsinitiative Rheinland-Pfalz [to CM]).

The authors report no biomedical financial interests or potential conflicts
of interest.

ARTICLE INFORMATION

From the Department of Psychology, Rheinland-Pfélzische Technische
Universitat Kaiserslautern-Landau, Landau, Germany.

Address correspondence to Christopher Milde, Ph.D., at christopher.
milde@rptu.de.

Received May 22, 2023; revised Aug 21, 2023; accepted Aug 28, 2023.

REFERENCES

1. Harrington A (1999): The Placebo Effect: An Interdisciplinary Explo-
ration. Cambridge: Harvard University Press.

Biological Psychiatry: Cognitive Neuroscience and Neuroimaging January 2024; 9:10-20 www.sobp.org/BPCNNI 17

Downloaded for Anonymous User (n/a) at US Department of Veterans Affairs from ClinicalKey.com by Elsevier on January
15, 2025. For personal use only. No other uses without permission. Copyright ©2025. Elsevier Inc. All rights reserved.


mailto:christopher.milde@rptu.de
mailto:christopher.milde@rptu.de
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref1
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref1
http://www.sobp.org/BPCNNI

Biological
Psychiatry:
CNNI

10.

11.

12.

13.

14.

15.

16.

17.

18.

19.

20.

21.

22.

23.

18

Stewart-Williams S, Podd J (2004): The placebo effect: Dissolving the
expectancy versus conditioning debate. Psychol Bull 130:324-340.
Kaptchuk TJ, Hemond CC, Miller FG (2020): Placebos in chronic
pain: Evidence, theory, ethics, and use in clinical practice. BMJ
370:m1668.

Benedetti F, Amanzio M (1997): The neurobiology of placebo anal-
gesia: From endogenous opioids to cholecystokinin. Prog Neurobiol
52:109-125.

Kube T, Rief W (2017): Are placebo and drug-specific effects addi-
tive? Questioning basic assumptions of double-blinded randomized
clinical trials and presenting novel study designs. Drug Discov Today
22:729-735.

Enck P, Bingel U, Schedlowski M, Rief W (2013): The placebo
response in medicine: Minimize, maximize or personalize? Nat Rev
Drug Discov 12:191-204.

Vase L, Petersen GL, Riley JL, Price DD (2009): Factors contributing
to large analgesic effects in placebo mechanism studies conducted
between 2002 and 2007. Pain 145:36-44.

Vase L, Riley JL, Price DD (2002): A comparison of placebo effects in
clinical analgesic trials versus studies of placebo analgesia. Pain
99:443-452.

Zou K, Wong J, Abdullah N, Chen X, Smith T, Doherty M, Zhang W
(2016): Examination of overall treatment effect and the proportion
attributable to contextual effect in osteoarthritis: Meta-analysis of
randomised controlled trials. Ann Rheum Dis 75:1964-1970.

Kirsch |, Deacon BJ, Huedo-Medina TB, Scoboria A, Moore TJ,
Johnson BT (2008): Initial severity and antidepressant benefits: A
meta-analysis of data submitted to the Food and Drug Administra-
tion. PLoS Med 5:e45.

Kirsch |, Sapirstein G (1999): Listening to Prozac but hearing placebo:
A meta-analysis of antidepressant medications. How Expectancies
Shape Experience 1:303-320.

Tuttle AH, Tohyama S, Ramsay T, Kimmelman J, Schweinhardt P,
Bennett GJ, Mogil JS (2015): Increasing placebo responses over time
in U.S. clinical trials of neuropathic pain. Pain 156:2616-2626.

Ader R, Cohen N (1975): Behaviorally conditioned immunosuppres-
sion. Psychosom Med 37:333-340.

Voudouris NJ, Peck CL, Coleman G (1989): Conditioned response
models of placebo phenomena: Further support. Pain 38:109-
116.

Wickramasekera | (1980): A conditioned response model of the
placebo effect: Predictions from the model. Biofeedback Self Regul
5:5-18.

Colloca L, Miller FG (2011): How placebo responses are formed: A
learning perspective. Philos Trans R Soc Lond B Biol Sci 366:1859—
1869.

Brascher AK, Witthoft M, Becker S (2018): The underestimated sig-
nificance of conditioning in placebo hypoalgesia and nocebo
hyperalgesia. Pain Res Manag 2018:6841985.

Colloca L, Tinazzi M, Recchia S, Le Pera D, Fiaschi A, Benedetti F,
Valeriani M (2008): Learning potentiates neurophysiological and
behavioral placebo analgesic responses. Pain 139:306-314.
Voudouris NJ, Peck CL, Coleman G (1990): The role of conditioning
and verbal expectancy in the placebo response. Pain 43:121-128.
Geers AL, Caplandies FC (2020): Placebo and nocebo effects. In:
Sweeny K, Robbins ML, Cohen LM, editors. The Wiley Encyclo-
pedia of Health Psychology. Chichester, UK: John Wiley & Sons,
Ltd, 475-483.

Vachon-Presseau E, Abdullah TB, Berger SE, Huang L, Griffith JW,
Schnitzer TJ, Apkarian AV (2022): Validating a biosignature-
predicting placebo pill response in chronic pain in the settings of a
randomized controlled trial. Pain 163:910-922.

Zunhammer M, Spisak T, Wager TD, Bingel U, Placebo Imaging
Consortium (2021): Meta-analysis of neural systems underlying pla-
cebo analgesia from individual participant fMRI data. Nat Commun
12:1391.

Wager TD, Atlas LY, Leotti LA, Rilling JK (2011): Predicting individual
differences in placebo analgesia: Contributions of brain activity dur-
ing anticipation and pain experience. J Neurosci 31:439-452.

24,

25.

26.

27.

28.

29.

30.

31.

33.

34.

35.

36.

37.

39.

40.

41.

42,

43.

44,

45,

Active Inference Theory in Placebo Analgesia

Benedetti F (1996): The opposite effects of the opiate antagonist
naloxone and the cholecystokinin antagonist proglumide on placebo
analgesia. Pain 64:535-543.

Scott DJ, Stohler CS, Egnatuk CM, Wang H, Koeppe RA, Zubieta JK
(2008): Placebo and nocebo effects are defined by opposite opioid
and dopaminergic responses. Arch Gen Psychiatry 65:220-231.
Biichel C, Geuter S, Sprenger C, Eippert F (2014): Placebo analgesia:
A predictive coding perspective. Neuron 81:1223-1239.

Pagnini F, Barbiani D, Cavalera C, Volpato E, Grosso F, Minazzi GA,
et al. (2023): Placebo and nocebo effects as Bayesian-brain phe-
nomena: The overlooked role of likelihood and attention. Perspect
Psychol Sci 18:1217-1229.

Kuperman P, Talmi D, Katz N, Treister R (2020): Certainty in
ascending sensory signals — The unexplored driver of analgesic
placebo response. Med Hypotheses 143:110113.

Kirsch | (2018): Response expectancy and the placebo effect. Int Rev
Neurobiol 138:81-93.

Skyt I, Lunde SJ, Baastrup C, Svensson P, Jensen TS, Vase L (2020):
Neurotransmitter systems involved in placebo and nocebo effects in
healthy participants and patients with chronic pain: A systematic
review. Pain 161:11-23.

Grahl A, Onat S, Bichel C (2018): The periaqueductal gray and
Bayesian integration in placebo analgesia. eLife 7:€32930.

Treister R, Honigman L, Lawal OD, Lanier RK, Katz NP (2019):
A deeper look at pain variability and its relationship with the placebo
response: Results from a randomized, double-blind, placebo-
controlled clinical trial of naproxen in osteoarthritis of the knee. Pain
160:1522-1528.

Treister R, Lawal OD, Shecter JD, Khurana N, Bothmer J, Field M,
et al. (2018): Accurate pain reporting training diminishes the placebo
response: Results from a randomised, double-blind, crossover trial.
PLoS One 13:e0197844.

Friston K (2010): The free-energy principle: A unified brain theory?
Nat Rev Neurosci 11:127-138.

Friston K (2003): Learning and inference in the brain. Neural Netw
16:1325-1352.

Seth AK, The cybernetic Bayesian brain: From interoceptive inference
to sensorimotor contingencies: From interoceptive inference to
sensorimotor contingencies. Open Mind, Available at: https://open-
mind.net/papers/the-cybernetic-bayesian-brain. Accessed July 25,
2022.

Lee TS, Mumford D (2003): Hierarchical Bayesian inference in the
visual cortex. J Opt Soc Am A Opt Image Sci Vis 20:1434-1448.
Stephan KE, Manjaly ZM, Mathys CD, Weber LAE, Paliwal S, Gard T,
et al. (2016): Allostatic self-efficacy: A metacognitive theory of
dyshomeostasis-induced fatigue and depression. Front Hum Neu-
rosci 10:550.

Kube T, Rozenkrantz L, Rief W, Barsky A (2020): Understanding
persistent physical symptoms: Conceptual integration of psycho-
logical expectation models and predictive processing accounts. Clin
Psychol Rev 76:101829.

Kube T, Schwarting R, Rozenkrantz L, Glombiewski JA, Rief W
(2020): Distorted cognitive processes in major depression: A pre-
dictive processing perspective. Biol Psychiatry 87:388-398.

DeVille DC, Kerr KL, Avery JA, Burrows K, Bodurka J, Feinstein JS,
et al. (2018): The neural bases of interoceptive encoding and recall in
healthy adults and adults with depression. Biol Psychiatry Cogn
Neurosci Neuroimaging 3:546-554.

Van den Bergh O, Witth6ft M, Petersen S, Brown RJ (2017): Symp-
toms and the body: Taking the inferential leap. Neurosci Biobehav
Rev 74:185-203.

Van den Bergh O, Brosschot J, Critchley H, Thayer JF, Ottaviani C
(2021): Better safe than sorry: A common signature of general
vulnerability for psychopathology. Perspect Psychol Sci 16:225-
246.

Kersten D, Mamassian P, Yuille A (2004): Object perception as
Bayesian inference. Annu Rev Psychol 55:271-304.

Kaiser D, Quek GL, Cichy RM, Peelen MV (2019): Object vision in a
structured world. Trends Cogn Sci 23:672-685.

Biological Psychiatry: Cognitive Neuroscience and Neuroimaging January 2024; 9:10-20 www.sobp.org/BPCNNI

Downloaded for Anonymous User (n/a) at US Department of Veterans Affairs from ClinicalKey.com by Elsevier on January
15, 2025. For personal use only. No other uses without permission. Copyright ©2025. Elsevier Inc. All rights reserved.


http://refhub.elsevier.com/S2451-9022(23)00219-7/sref2
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref2
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref3
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref3
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref3
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref4
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref4
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref4
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref5
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref5
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref5
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref5
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref6
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref6
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref6
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref7
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref7
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref7
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref8
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref8
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref8
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref9
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref9
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref9
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref9
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref10
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref10
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref10
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref10
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref11
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref11
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref11
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref12
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref12
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref12
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref13
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref13
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref14
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref14
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref14
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref15
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref15
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref15
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref16
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref16
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref16
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref17
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref17
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref17
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref18
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref18
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref18
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref19
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref19
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref20
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref20
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref20
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref20
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref21
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref21
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref21
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref21
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref22
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref22
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref22
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref22
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref23
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref23
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref23
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref24
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref24
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref24
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref25
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref25
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref25
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref26
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref26
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref27
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref27
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref27
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref27
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref28
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref28
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref28
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref29
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref29
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref30
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref30
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref30
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref30
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref31
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref31
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref32
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref32
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref32
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref32
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref32
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref33
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref33
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref33
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref33
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref34
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref34
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref35
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref35
https://open-mind.net/papers/the-cybernetic-bayesian-brain
https://open-mind.net/papers/the-cybernetic-bayesian-brain
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref37
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref37
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref38
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref38
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref38
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref38
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref39
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref39
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref39
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref39
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref40
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref40
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref40
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref41
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref41
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref41
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref41
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref42
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref42
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref42
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref43
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref43
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref43
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref43
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref44
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref44
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref45
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref45
http://www.sobp.org/BPCNNI

Active Inference Theory in Placebo Analgesia

46.

47.

48.

49.

50.

51.

52.

53.

54.

55.

56.

57.

58.

59.

60.

61.

62.

63.

64.

65.

66.

67.

68.

69.

70.

71.

Hird EJ, Charalambous C, El-Deredy W, Jones AKP, Talmi D (2019):
Boundary effects of expectation in human pain perception. Sci Rep
9:9443.

Press C, Kok P, Yon D (2020): The perceptual prediction paradox.
Trends Cogn Sci 24:13-24.

Green DM, Swets JA (1966). Signal Detection Theory and Psycho-
physics, vol. 1. New York: Wiley.

Khalsa SS, Adolphs R, Cameron OG, Critchley HD, Davenport PW,
Feinstein JS, et al. (2018): Interoception and mental health: A road-
map. Biol Psychiatry Cogn Neurosci Neuroimaging 3:501-513.
Press C, Yon D (2019): Perceptual prediction: Rapidly making sense
of a noisy world. Curr Biol 29:R751-R753.

Petersen S, Schroijen M, Mélders C, Zenker S, Van den Bergh O
(2014): Categorical interoception: Perceptual organization of sensa-
tions from inside. Psychol Sci 25:1059-1066.

Benedetti F, Amanzio M, Maggi G (1995): Potentiation of placebo
analgesia by proglumide. Lancet 346:1231.

Petzschner FH, Weber LAE, Gard T, Stephan KE (2017): Computa-
tional psychosomatics and computational psychiatry: Toward a joint
framework for differential diagnosis. Biol Psychiatry 82:421-430.
Friston KJ, Daunizeau J, Kilner J, Kiebel SJ (2010): Action and
behavior: A free-energy formulation. Biol Cybern 102:227-260.
Geers AL, Helfer SG, Weiland PE, Kosbab K (2006): Expectations and
placebo response: A laboratory investigation into the role of somatic
focus. J Behav Med 29:171-178.

Hoskin R, Berzuini C, Acosta-Kane D, El-Deredy W, Guo H, Talmi D
(2019): Sensitivity to pain expectations: A Bayesian model of indi-
vidual differences. Cognition 182:127-139.

Harris RE, Williams DA, McLean SA, Sen A, Hufford M, Gendreau RM,
et al. (2005): Characterization and consequences of pain variability in
individuals with fibromyalgia. Arthritis Rheum 52:3670-3674.

Farrar JT, Troxel AB, Haynes K, Gilron |, Kerns RD, Katz NP, et al.
(2014): Effect of variability in the 7-day baseline pain diary on the
assay sensitivity of neuropathic pain randomized clinical trials: An
ACTTION study. Pain 155:1622-1631.

Zubieta JK, Bueller JA, Jackson LR, Scott DJ, Xu Y, Koeppe RA, et al.
(2005): Placebo effects mediated by endogenous opioid activity on p-
opioid receptors. J Neurosci 25:7754-7762.

Yamamotova A (2019): Endogenous antinociceptive system and
potential ways to influence it. Physiol Res 68(suppl 3):S195-S205.
Millan MJ (2002): Descending control of pain. Prog Neurobiol
66:355-474.

Brown H, Adams RA, Parees |, Edwards M, Friston K (2013): Active
inference, sensory attenuation and illusions. Cogn Process
14:411-427.

Feldhaus MH, Horing B, Sprenger C, Biichel C (2021): Association of
nocebo hyperalgesia and basic somatosensory characteristics in a
large cohort. Sci Rep 11:762.

Johnston NE, Atlas LY, Wager TD (2012): Opposing effects of ex-
pectancy and somatic focus on pain. PLoS One 7:638854.

Colloca L, Petrovic P, Wager TD, Ingvar M, Benedetti F (2010): How
the number of learning trials affects placebo and nocebo responses.
Pain 151:430-439.

Kiverstein J, Kirchhoff MD, Thacker M (2022): An embodied pre-
dictive processing theory of pain experience. Rev Phil Psych
13:973-998.

Friston K, FitzGerald T, Rigoli F, Schwartenbeck P, O Doherty J,
Pezzulo G (2016): Active inference and learning. Neurosci Biobehav
Rev 68:862-879.

Pezzulo G, Rigoli F, Friston K (2015): Active inference, homeostatic
regulation and adaptive behavioural control. Prog Neurobiol
134:17-35.

Sterling P (2012): Allostasis: A model of predictive regulation. Physiol
Behav 106:5-15.

Siegel S (2008): Learning and the wisdom of the body. Learn Behav
36:242-252.

Nesse RM, Schulkin J (2019): An evolutionary medicine perspective
on pain and its disorders. Philos Trans R Soc Lond B Biol Sci 374:
20190288.

72.

73.

74.

75.

76.

77.

78.

79.

80.

81.

82.

83.

84.

85.

86.

87.

88.

89.

90.

91.

92.

93.

94.

Biological
Psychiatry:
CNNI

Walters ET, Wiliams ACC (2019): Evolution of mechanisms and
behaviour important for pain. Philos Trans R Soc Lond B Biol Sci 374:
20190275.

Bruehl S, Chung OY (2004): Interactions between the cardiovas-
cular and pain regulatory systems: An updated review of mecha-
nisms and possible alterations in chronic pain. Neurosci Biobehav
Rev 28:395-414.

Bruehl S, McCubbin JA, Harden RN (1999): Theoretical review:
Altered pain regulatory systems in chronic pain. Neurosci Biobehav
Rev 23:877-890.

Randich A, Maixner W (1984): Interactions between cardiovascular
and pain regulatory systems. Neurosci Biobehav Rev 8:343-367.
Borsook D, Maleki N, Becerra L, McEwen B (2012): Understanding
migraine through the lens of maladaptive stress responses: A model
disease of allostatic load. Neuron 73:219-234.

Coll MP, Slimani H, Woo CW, Wager TD, Rainville P, Vachon-
Presseau E., Roy M (2022): The neural signature of the decision value
of future pain. Proc Natl Acad Sci USA 119:e2119931119.
Yarnitsky D (2015): Role of endogenous pain modulation in chronic
pain mechanisms and treatment. Pain 156:524-S31.

Chrétien R, Lavoie S, Chalaye P, de Vette E, Counil FP, Dallaire F,
Lafrenaye S (2018): Reduced endogenous pain inhibition in adoles-
cent girls with chronic pain. Scand J Pain 18:711-717.

Nir RR, Yarnitsky D (2015): Conditioned pain modulation. Curr Opin
Support Palliat Care 9:131-137.

Price DD, Staud R, Robinson ME, Mauderli AP, Cannon R, Vierck CJ
(2002): Enhanced temporal summation of second pain and its central
modulation in fibromyalgia patients. Pain 99:49-59.

Geisler M, Herbsleb M, Bér KJ, Weiss T (2020): Dissociation of
endogenous pain inhibition due to conditioned pain modulation and
placebo in male athletes versus nonathletes. Front Psychol 11:553530.
Damien J, Colloca L, Bellei-Rodriguez CE., Marchand S (2018): Pain
modulation: From conditioned pain modulation to placebo and
nocebo effects in experimental and clinical pain. Int Rev Neurobiol
139:255-296.

Sprenger C, Bingel U, Biichel C (2011): Treating pain with pain:
Supraspinal mechanisms of endogenous analgesia elicited by het-
erotopic noxious conditioning stimulation. Pain 152:428-439.
Bjorkedal E, Flaten MA (2012): Expectations of increased and
decreased pain explain the effect of conditioned pain modulation in
females. J Pain Res 5:289-300.

Nahman-Averbuch H, Nir RR, Sprecher E, Yarnitsky D (2016): Psy-
chological factors and conditioned pain modulation: A Meta-Anal-
ysis. Clin J Pain 32:541-554,

Graeff P, Stacheneder R, Alt L, Ruscheweyh R (2022): The Contri-
bution of Psychological Factors to Interindividual Variability in
Conditioned Pain Modulation Is Limited in Young Healthy Subjects.
Brain Sci 12:623.

Geva N, Pruessner J, Defrin R (2014): Acute psychosocial stress re-
duces pain modulation capabilities in healthy men. Pain 155:2418-2425.
Geva N, Defrin R (2018): Opposite effects of stress on pain modu-
lation depend on the magnitude of individual stress response. J Pain
19:360-371.

Geva N, Pruessner J, Defrin R (2017): Triathletes lose their advan-
tageous pain modulation under acute psychosocial stress. Med Sci
Sports Exerc 49:333-341.

Geva N, Defrin R (2013): Enhanced pain modulation among tri-
athletes: A possible explanation for their exceptional capabilities.
Pain 154:2317-2323.

Wiech K, Eippert F, Vandekerckhove J, Zaman J, Placek K,
Tuerlinckx F, et al. (2022): Cortico-brainstem mechanisms of
biased perceptual decision-making in the context of pain. J Pain
23:680-692.

Yoshida W, Seymour B, Koltzenburg M, Dolan RJ (2013): Uncertainty
increases pain: Evidence for a novel mechanism of pain modulation
involving the periaqueductal gray. J Neurosci 33:5638-5646.
Carlino E, Torta DM, Piedimonte A, Frisaldi E, Vighetti S, Benedetti F
(2015): Role of explicit verbal information in conditioned analgesia.
Eur J Pain 19:546-553.

Biological Psychiatry: Cognitive Neuroscience and Neuroimaging January 2024; 9:10-20 www.sobp.org/BPCNNI 19

Downloaded for Anonymous User (n/a) at US Department of Veterans Affairs from ClinicalKey.com by Elsevier on January
15, 2025. For personal use only. No other uses without permission. Copyright ©2025. Elsevier Inc. All rights reserved.


http://refhub.elsevier.com/S2451-9022(23)00219-7/sref46
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref46
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref46
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref47
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref47
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref48
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref48
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref49
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref49
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref49
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref50
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref50
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref51
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref51
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref51
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref52
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref52
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref53
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref53
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref53
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref54
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref54
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref55
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref55
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref55
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref56
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref56
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref56
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref57
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref57
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref57
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref58
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref58
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref58
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref58
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref59
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref59
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref59
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref60
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref60
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref61
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref61
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref62
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref62
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref62
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref63
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref63
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref63
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref64
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref64
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref65
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref65
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref65
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref66
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref66
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref66
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref67
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref67
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref67
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref68
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref68
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref68
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref69
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref69
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref70
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref70
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref71
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref71
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref71
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref72
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref72
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref72
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref73
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref73
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref73
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref73
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref74
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref74
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref74
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref75
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref75
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref76
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref76
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref76
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref77
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref77
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref77
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref78
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref78
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref79
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref79
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref79
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref80
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref80
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref81
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref81
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref81
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref82
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref82
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref82
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref83
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref83
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref83
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref83
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref84
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref84
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref84
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref85
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref85
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref85
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref86
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref86
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref86
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref87
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref87
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref87
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref87
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref88
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref88
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref89
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref89
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref89
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref90
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref90
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref90
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref91
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref91
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref91
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref92
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref92
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref92
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref92
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref93
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref93
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref93
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref94
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref94
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref94
http://www.sobp.org/BPCNNI

Biological
Psychiatry:
CNNI

95.

96.

97.

20

Bajcar EA, Wiercioch-Kuzianik K, Farley D, Buglewicz E, Paulewicz B,
Babel P (2021): Order does matter: The combined effects of classical
conditioning and verbal suggestions on placebo hypoalgesia and
nocebo hyperalgesia. Pain 162:2237-2245.

Hird EJ, Jones AKP, Talmi D, El-Deredy W (2018): A comparison
between the neural correlates of laser and electric pain stimulation
and their modulation by expectation. J Neurosci Methods 293:117-
127.

Drusko A, Baumeister D, McPhee Christensen M, Kold S, Fisher VL,
Treede RD, et al. (2023): A novel computational approach to pain
perception modelling within a Bayesian framework using quantitative
sensory testing. Sci Rep 13:3196.

98.

99.

100.

101.

Active Inference Theory in Placebo Analgesia

Wiech K, Vandekerckhove J, Zaman J, Tuerlinckx F, Vlaeyen JW,
Tracey | (2014): Influence of prior information on pain involves biased
perceptual decision-making. Curr Biol 24:R679-R681.

Wand BM, Keeves J, Bourgoin C, George PJ, Smith AJ,
O’Connell NE, Moseley GL (2013): Mislocalization of sensory infor-
mation in people with chronic low back pain: A preliminary investi-
gation. Clin J Pain 29:737-743.

Maihofner Ch, Neundorfer B, Birklein F, Handwerker HO (2006):
Mislocalization of tactile stimulation in patients with complex regional
pain syndrome. J Neurol 253:772-779.

Moseley GL, Vlaeyen JWS (2015): Beyond nociception: The impre-
cision hypothesis of chronic pain. Pain 156:35-38.

Biological Psychiatry: Cognitive Neuroscience and Neuroimaging January 2024; 9:10-20 www.sobp.org/BPCNNI

Downloaded for Anonymous User (n/a) at US Department of Veterans Affairs from ClinicalKey.com by Elsevier on January
15, 2025. For personal use only. No other uses without permission. Copyright ©2025. Elsevier Inc. All rights reserved.


http://refhub.elsevier.com/S2451-9022(23)00219-7/sref95
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref95
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref95
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref95
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref96
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref96
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref96
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref96
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref97
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref97
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref97
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref97
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref98
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref98
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref98
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref99
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref99
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref99
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref99
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref100
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref100
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref100
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref101
http://refhub.elsevier.com/S2451-9022(23)00219-7/sref101
http://www.sobp.org/BPCNNI

	Does Active Inference Provide a Comprehensive Theory of Placebo Analgesia?
	Background
	Predictive Processing Models of Placebo Analgesia
	Learning From Sensory Data or Sticking With Prior Expectations?
	Active Inference Theory of Placebo Analgesia
	Active Inference in Classical Conditioning and Verbal Suggestion Paradigms
	Small Precision-Weighted PEs Increase Placebo Analgesia in Verbal Suggestion Paradigms
	Large Precision-Weighted PEs Increase Placebo Analgesia in Classical Conditioning Paradigms
	Evolutionary Function of Active Inference in Placebo Analgesia and Pain Perception
	The Role of Active Inference in Placebo Analgesia: Measuring Changes in Endogenous Pain Modulation
	Suggestions for Future Studies
	Conclusions
	References


